Existence of Nonelliptic mod Galois Representations for Every > 5 Luis

نویسنده

  • Luis Dieulefait
چکیده

In [Shepherd-Barron and Taylor 97] it is shown that for = 3 and 5 every odd, irreducible, two-dimensional Galois representation of Gal(Q̄/Q) with values in F and determinant the cyclotomic character is “elliptic,” i.e., it agrees with the representation given by the action of Gal(Q̄/Q) on the -torsion points of an elliptic curve defined over Q. In this note we will show that this is false for every prime > 5, i.e., that for every such prime there exists a Galois representation verifying the above properties but “nonelliptic,” i.e., not corresponding to the action of Galois on torsion points of any elliptic curve defined over Q. We will show this by giving concrete examples of nonelliptic representations. For any prime > 7, the example will be constructed starting from a weight-4 classical modular form, corresponding to a rigid Calabi-Yau threefold. The case of = 7 will be treated separately in the next section. We consider the cuspidal modular form f ∈ S4(25) (i.e., of weight 4, level 25, and trivial nebentypus) which has all eigenvalues in Z and whose attached Galois representations ρf, agree (see [Schoen 86, Yui 03]) with the Galois representations on the third étale cohomology groups of the Schoen rigid Calabi-Yau threefold. This threefold is obtained (after resolving the singularities) from

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Non-existence of Certain Mod 2 Galois Representations of Some Small Quadratic Fields

For a few quadratic fields, the non-existence is proved of continuous irreducible mod 2 Galois representations of degree 2 unramified outside {2,∞}.

متن کامل

Automorphic Lifts of Prescribed Types

We prove a variety of results on the existence of automorphic Galois representations lifting a residual automorphic Galois representation. We prove a result on the structure of deformation rings of local Galois representations, and deduce from this and the method of Khare and Wintenberger a result on the existence of modular lifts of specified type for Galois representations corresponding to Hi...

متن کامل

Mod 4 Galois Representations and Elliptic Curves

Galois representations ρ : GQ → GL2(Z/n) with cyclotomic determinant all arise from the n-torsion of elliptic curves for n = 2, 3, 5. For n = 4, we show the existence of more than a million such representations which are surjective and do not arise from any elliptic curve.

متن کامل

Refinement of Tate ’ s Discriminant Bound and Non - Existence Theorems for Mod p Galois Representations

Non-existence is proved of certain continuous irreducible mod p representations of degree 2 of the absolute Galois group of the rational number field. This extends previously known results, the improvement based on a refinement of Tate’s discriminant bound. 2000 Mathematics Subject Classification: 11F80, 11R29, 11R39

متن کامل

Congruences between Modular Forms and Lowering the Level Mod ℓ

In this article we study the behavior of inertia groups for modular Galois mod ln representations and in some cases we give a generalization of Ribet’s lowering the level result (cf. [Rib90]).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004